Вопрос задан 20.06.2023 в 09:01. Предмет Математика. Спрашивает Васильева Анастасия.

Папа с сыном взяли моторную лодку и отправились против течения реки к мосту где ловится много рыбы,

наловив целый мешок они отправились назад по течению. Скорость моторной лодки против течения равна 17,2км/ч. а скорость течения 1,8км/ч. Определите собственную скорость мотороной лодки и её скорость по течению реки
1 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузьмина Анастасия.

Ответ: 19км/ч ( собс скорость),20,2км/ч по течению

Пошаговое объяснение:

1) 17,2+1,8=19(км/ч) собс. скорость лодки

2) 19+1,8=20,8(км/ч) скорость по течению

Дай лучший ответ и лайк пж

1 0
Отвечает Пятак Алёна.

Ответ:

17,2км/ч+1,8км/ч=19км/ч  скорость по течению                                      17,2км/ч-1,8км/ч*2=30,4км/ч собственная скорость лодки

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

A father and son took a motorboat and traveled against the current of a river to a bridge where they caught a lot of fish. After filling a whole bag with fish, they returned back with the current. The speed of the motorboat against the current is given as 17.2 km/h, and the speed of the current is given as 1.8 km/h. We need to determine the speed of the motorboat in still water and its speed with the current of the river.

Solution

Let's assume the speed of the motorboat in still water is x km/h, and the speed of the current is y km/h.

When the father and son traveled against the current, the effective speed of the motorboat would be the difference between the speed of the motorboat in still water and the speed of the current. So, the effective speed against the current is (x - y) km/h.

When the father and son traveled with the current, the effective speed of the motorboat would be the sum of the speed of the motorboat in still water and the speed of the current. So, the effective speed with the current is (x + y) km/h.

According to the problem, the effective speed against the current is given as 17.2 km/h, and the speed of the current is given as 1.8 km/h. We can set up the following equation:

(x - y) = 17.2 (Equation 1)

And when they returned back with the current, the effective speed with the current is given as 17.2 km/h. We can set up another equation:

(x + y) = 17.2 (Equation 2)

Now, we can solve these two equations to find the values of x and y.

Calculation

Let's solve the equations:

From Equation 1, we have: (x - y) = 17.2

From Equation 2, we have: (x + y) = 17.2

Adding both equations, we get: (x - y) + (x + y) = 17.2 + 17.2 2x = 34.4 x = 17.2

Substituting the value of x in Equation 2, we get: (17.2 + y) = 17.2 y = 0

Answer

The speed of the motorboat in still water is 17.2 km/h, and the speed of the current is 0 km/h.

Please note that the speed of the current being 0 km/h indicates that there is no current in the river.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос