
Прямоугольный треугольник KMN описан около окружности радиуса 13. Один из катетов треугольника=24 .
Найдите периметр треугольника

Ответы на вопрос

Ответ:
Попробую
Пошаговое объяснение:
Тк треуг КМN описанный, зн r - это один из катетов этого треуг. Тогда по Пифагору
c^2=13^2 + 24^2
C^2= 169+576=745
c= / 745= /729 + 16 = 27+4= 31
Тогда P=31+ 13+24=68
ОТВЕТ: 68



Прямоугольный треугольник KMN описан около окружности радиуса 13. Один из катетов треугольника равен 24. Найти периметр треугольника.
Для решения этой задачи можно использовать теорему Пифагора, которая гласит, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Также можно воспользоваться тем фактом, что диаметр окружности, описанной около прямоугольного треугольника, равен его гипотенузе.
Пусть KM - гипотенуза, KN и MN - катеты. Тогда по условию задачи:
MN = 24
KM = 2 * 13 = 26
По теореме Пифагора:
KN^2 = KM^2 - MN^2
KN^2 = 26^2 - 24^2
KN^2 = 676 - 576
KN^2 = 100
KN = 10
Периметр треугольника равен сумме его сторон:
P = KM + KN + MN
P = 26 + 10 + 24
P = 60
Ответ: периметр треугольника равен 60.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili