Вопрос задан 17.06.2023 в 05:10. Предмет Математика. Спрашивает Смирнов Евгений.

Решите систему линейных уравненийx-y+2z=32x+y-3z=2x+2y+z=5​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мельникова Дашуля.

x = 2, y = 1, z = 1.

..............


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной системы линейных уравнений можно воспользоваться методом Гаусса или методом Крамера.

Метод Гаусса: 1. Запишем расширенную матрицу системы:

| 1 -1 2 | 32 | | 1 1 -3 | 2 | | 1 2 1 | 5 |

2. Приведем матрицу к ступенчатому виду, выполняя элементарные преобразования строк. Первым шагом вычтем из второй строки первую, а из третьей строки первую:

| 1 -1 2 | 32 | | 0 2 -5 |-30 | | 0 3 -1 |-27 |

3. Далее, вычтем из третьей строки вторую, умноженную на 3/2:

| 1 -1 2 | 32 | | 0 2 -5 |-30 | | 0 0 7 | 18 |

4. Разделим третью строку на 7:

| 1 -1 2 | 32 | | 0 2 -5 |-30 | | 0 0 1 | 2.57 |

5. Затем, найдем значения переменных, начиная с последней строки: z = 2.57

6. Подставим найденное значение z во вторую строку и найдем y: 2y - 5z = -30 2y - 5*2.57 = -30 2y - 12.85 = -30 2y = -30 + 12.85 2y = -17.15 y = -17.15 / 2 y = -8.575

7. Подставим найденные значения y и z в первую строку и найдем x: x - y + 2z = 32 x - (-8.575) + 2*2.57 = 32 x + 8.575 + 5.14 = 32 x + 13.715 = 32 x = 32 - 13.715 x = 18.285

Таким образом, решение системы линейных уравнений: x = 18.285 y = -8.575 z = 2.57

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос