Вопрос задан 16.06.2023 в 22:55. Предмет Математика. Спрашивает Борисенко Ирина.

- В основі похилої призми лежить рівносторонній трикутник зі стороною 6коріньз3 см. Одна з верши

верхньої основи рівновіддалена під усіх вершин нижньої основи. Знайдіть висоту призми, якщо і бічне ребро дорівнює 10 см.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Худов Данил.

Ответ:

я Ялта не понял наверное 1000

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вирішення цього завдання нам потрібно знайти висоту похилої призми, враховуючи, що одна з вершин верхньої основи рівновіддалена під усіма вершинами нижньої основи, а бічне ребро дорівнює 10 см.

Визначення висоти призми

Висота призми - це відстань між верхньою і нижньою основами. У даному випадку, висота призми буде відстанню між вершиною верхньої основи і площиною нижньої основи.

Знаходження висоти призми

Для знаходження висоти призми, нам потрібно використати властивості рівностороннього трикутника, який лежить в основі похилої призми.

За властивостями рівностороннього трикутника, висота може бути знайдена за формулою: висота = (сторона трикутника * корінь з 3) / 2.

У нашому випадку, сторона рівностороннього трикутника дорівнює 6 * корінь з 3 см. Підставляючи це значення в формулу, отримуємо:

висота = (6 * корінь з 3 * корінь з 3) / 2 висота = (6 * 3) / 2 висота = 18 / 2 висота = 9 см

Таким чином, висота похилої призми дорівнює 9 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос