Вопрос задан 15.06.2023 в 07:16. Предмет Математика. Спрашивает Мошанов Данил.

Будь ласка підкажіть як зробити завдання? (дякую)Розв'яжіть рівняння1) |х+1|=122) 2|х+1|+6=123)

7-|3х+2|=144) |х+1|+6=12​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Подковырова Полина.

Ответ:

Пошаговое объяснение:

1) |х+1|=12

x+1 = 12

x = 12-1

x = 11

и

x+1 = -12

x = -12-1

x = -13

ответ: -13 ; 11

============

2) 2|х+1|+6=12

2|x+1| = 12-6

2|x+1| = 6

|x+1| = 6:2

|x+1| = 3

x+1=3

x=3-1

x = 2

и

x+1 = -3

x = -3-1

x = -4

ответ: -4 ; 2

===============

3) 7-|3х+2|=14

|3x+2| = 7-14

|3x+2| = -7

ответ: решений нет

===================

4) |х+1|+6=12

|x+1| = 12-6

|x+1| = 6

x+1 = 6

x = 6-1

x = 5

и

x+1=-6

x = -6-1

x = -7

ответ: -7 ; 5

0 0
Отвечает Фенцель Артём.

Ответ:

1) |х+1|=12

х+1=12   х+1=-12

х₁=-13    х₂=11

2) 2|х+1|+6=12

   2Іх+1І=12-6

   2Іх+1І=6

   Іх+1І=3  

   х+1=3     х+1=-3

   х₁=-4      х₂=2

3) 7-|3х+2|=14

   -І3х+2І=14-7

    -І3х+2І=7

    І3х+2І=-7

   Рівння не має розвязку

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Звучить, як ви шукаєте допомогу з розв'язанням кількох рівнянь. Давайте розглянемо кожне з них по черзі.

Рівняння 1: |x + 1| = 12

Це рівняння має абсолютний модуль (абсолютну величину), що означає, що значення виразу всередині модулю може бути або додатним, або від'ємним, або нульовим. Тому ми повинні розглянути три випадки:

Випадок 1: x + 1 > 0

В цьому випадку ми можемо просто видалити модуль і отримати рівняння:

x + 1 = 12

Тепер можна розв'язати це рівняння для x:

x = 12 - 1

x = 11

Випадок 2: x + 1 < 0

В цьому випадку ми також можемо видалити модуль і отримати рівняння, але зміниться знак:

-(x + 1) = 12

x + 1 = -12

Тепер можна розв'язати це рівняння для x:

x = -12 - 1

x = -13

Випадок 3: x + 1 = 0

У цьому випадку ми отримуємо:

x + 1 = 0

x = -1

Так отже, розв'язками даного рівняння є x = 11, x = -13 і x = -1.

Рівняння 2: 2|x + 1| + 6 = 12

Це рівняння також має абсолютний модуль. Давайте розглянемо його розв'язок.

Спочатку видалимо константу 6 з обох сторін рівняння:

2|x + 1| = 12 - 6

2|x + 1| = 6

Тепер поділимо обидві сторони на 2:

|x + 1| = 3

Так як модуль завжди повертає невід'ємні значення, ми можемо розглянути два випадки:

Випадок 1: x + 1 > 0

В цьому випадку ми можемо просто видалити модуль і отримати рівняння:

x + 1 = 3

Тепер можна розв'язати це рівняння для x:

x = 3 - 1

x = 2

Випадок 2: x + 1 < 0

В цьому випадку ми також можемо видалити модуль і змінити знак:

-(x + 1) = 3

x + 1 = -3

Тепер можна розв'язати це рівняння для x:

x = -3 - 1

x = -4

Отже, розв'язками даного рівняння є x = 2 і x = -4.

Рівняння 3: 7 - |3x + 2| = 14

Це рівняння також має абсолютний модуль. Давайте розглянемо його розв'язок.

Спочатку видалимо константу 7 з обох сторін рівняння:

-|3x + 2| = 14 - 7

-|3x + 2| = 7

Тепер помножимо обидві сторони на -1, щоб змінити знак:

|3x + 2| = -7

Отже, ми отримали рівняння з від'ємним значенням абсолютного модулю, що означає, що це рівняння не має розв'язків. Тому дане рівняння не має розв'язків.

Рівняння 4: |x + 1| + 6 = 12

Це рівняння також має абсолютний модуль. Давайте розглянемо його розв'язок.

Спочатку видалимо константу 6 з обох сторін рівняння:

|x + 1| = 12 - 6

|x + 1| = 6

Так як модуль завжди повертає невід'ємні значення, ми можемо розглянути два випадки:

Випадок 1: x + 1 > 0

В цьому випадку ми можемо просто видалити модуль і отримати рівняння:

x + 1 = 6

Тепер можна розв'язати це рівняння для x:

x = 6 - 1

x = 5

Випадок 2: x + 1 < 0

В цьому випадку ми також можемо видалити модуль і змінити знак:

-(x + 1) = 6

x + 1 = -6

Тепер можна розв'язати це рівняння для x:

x = -6 - 1

x = -7

Отже, розв'язками даного рівняння є x = 5 і x = -7.

Надіюся, ця підробна відповідь допомогла вам з розв'язанням ваших рівнянь. Якщо у вас є ще якісь питання, будь ласка, дайте знати!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос