
Будь ласка підкажіть як зробити завдання? (дякую)Розв'яжіть рівняння1) |х+1|=122) 2|х+1|+6=123)
7-|3х+2|=144) |х+1|+6=12

Ответы на вопрос

Ответ:
Пошаговое объяснение:
1) |х+1|=12
x+1 = 12
x = 12-1
x = 11
и
x+1 = -12
x = -12-1
x = -13
ответ: -13 ; 11
============
2) 2|х+1|+6=12
2|x+1| = 12-6
2|x+1| = 6
|x+1| = 6:2
|x+1| = 3
x+1=3
x=3-1
x = 2
и
x+1 = -3
x = -3-1
x = -4
ответ: -4 ; 2
===============
3) 7-|3х+2|=14
|3x+2| = 7-14
|3x+2| = -7
ответ: решений нет
===================
4) |х+1|+6=12
|x+1| = 12-6
|x+1| = 6
x+1 = 6
x = 6-1
x = 5
и
x+1=-6
x = -6-1
x = -7
ответ: -7 ; 5



Ответ:
1) |х+1|=12
х+1=12 х+1=-12
х₁=-13 х₂=11
2) 2|х+1|+6=12
2Іх+1І=12-6
2Іх+1І=6
Іх+1І=3
х+1=3 х+1=-3
х₁=-4 х₂=2
3) 7-|3х+2|=14
-І3х+2І=14-7
-І3х+2І=7
І3х+2І=-7
Рівння не має розвязку
Пошаговое объяснение:



Звучить, як ви шукаєте допомогу з розв'язанням кількох рівнянь. Давайте розглянемо кожне з них по черзі.
Рівняння 1: |x + 1| = 12
Це рівняння має абсолютний модуль (абсолютну величину), що означає, що значення виразу всередині модулю може бути або додатним, або від'ємним, або нульовим. Тому ми повинні розглянути три випадки:
Випадок 1: x + 1 > 0
В цьому випадку ми можемо просто видалити модуль і отримати рівняння:
x + 1 = 12
Тепер можна розв'язати це рівняння для x:
x = 12 - 1
x = 11
Випадок 2: x + 1 < 0
В цьому випадку ми також можемо видалити модуль і отримати рівняння, але зміниться знак:
-(x + 1) = 12
x + 1 = -12
Тепер можна розв'язати це рівняння для x:
x = -12 - 1
x = -13
Випадок 3: x + 1 = 0
У цьому випадку ми отримуємо:
x + 1 = 0
x = -1
Так отже, розв'язками даного рівняння є x = 11, x = -13 і x = -1.
Рівняння 2: 2|x + 1| + 6 = 12
Це рівняння також має абсолютний модуль. Давайте розглянемо його розв'язок.
Спочатку видалимо константу 6 з обох сторін рівняння:
2|x + 1| = 12 - 6
2|x + 1| = 6
Тепер поділимо обидві сторони на 2:
|x + 1| = 3
Так як модуль завжди повертає невід'ємні значення, ми можемо розглянути два випадки:
Випадок 1: x + 1 > 0
В цьому випадку ми можемо просто видалити модуль і отримати рівняння:
x + 1 = 3
Тепер можна розв'язати це рівняння для x:
x = 3 - 1
x = 2
Випадок 2: x + 1 < 0
В цьому випадку ми також можемо видалити модуль і змінити знак:
-(x + 1) = 3
x + 1 = -3
Тепер можна розв'язати це рівняння для x:
x = -3 - 1
x = -4
Отже, розв'язками даного рівняння є x = 2 і x = -4.
Рівняння 3: 7 - |3x + 2| = 14
Це рівняння також має абсолютний модуль. Давайте розглянемо його розв'язок.
Спочатку видалимо константу 7 з обох сторін рівняння:
-|3x + 2| = 14 - 7
-|3x + 2| = 7
Тепер помножимо обидві сторони на -1, щоб змінити знак:
|3x + 2| = -7
Отже, ми отримали рівняння з від'ємним значенням абсолютного модулю, що означає, що це рівняння не має розв'язків. Тому дане рівняння не має розв'язків.
Рівняння 4: |x + 1| + 6 = 12
Це рівняння також має абсолютний модуль. Давайте розглянемо його розв'язок.
Спочатку видалимо константу 6 з обох сторін рівняння:
|x + 1| = 12 - 6
|x + 1| = 6
Так як модуль завжди повертає невід'ємні значення, ми можемо розглянути два випадки:
Випадок 1: x + 1 > 0
В цьому випадку ми можемо просто видалити модуль і отримати рівняння:
x + 1 = 6
Тепер можна розв'язати це рівняння для x:
x = 6 - 1
x = 5
Випадок 2: x + 1 < 0
В цьому випадку ми також можемо видалити модуль і змінити знак:
-(x + 1) = 6
x + 1 = -6
Тепер можна розв'язати це рівняння для x:
x = -6 - 1
x = -7
Отже, розв'язками даного рівняння є x = 5 і x = -7.
Надіюся, ця підробна відповідь допомогла вам з розв'язанням ваших рівнянь. Якщо у вас є ще якісь питання, будь ласка, дайте знати!


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili