
2sin^2 2x=(cosx+sinx)^2


Ответы на вопрос

2sin^2 2x=(cosx+sinx)^2
2(2sinxcox)^2 =cos^2(x)+2sinxcosx+sin^2(x)
2(2sinxcox)^2 =2sinxcosx+1
2(2sinxcox)^2-2sinxcosx-1=0
сделаем замену
2sinxcosx=sin2x=t
2t^2-t-1=0
D=(-1)^2-4*2*(-1)=1+8=9
√D=√9=3
t1=(1+3)/2*2=1
t2=(1-3)/4=-2/4=-1/2
делаем обратную замену
sin2x=1
2х=π/2+2πn. n∈Z
x=π/4+πn, n∈Z
sin2x= -1/2
2x= (-1)^k arcsin(-1/2)+πk, k∈Z
2x=(-1)^k+1 π/6+πk, k∈Z
x=(-1)^k+1 π/12+πk/2, k∈Z
Ответ:
x1=π/4+πn, n∈Z
x2=(-1)^k+1 π/12+πk/2, k∈Z



To solve the equation 2sin^2(2x) = (cos(x) + sin(x))^2, we can use trigonometric identities to simplify and manipulate the equation.
Let's start by expanding the right side of the equation using the identity (a + b)^2 = a^2 + 2ab + b^2:
2sin^2(2x) = (cos(x) + sin(x))^2 2sin^2(2x) = cos^2(x) + 2cos(x)sin(x) + sin^2(x)
Next, we can use the Pythagorean identity sin^2(x) + cos^2(x) = 1 to simplify the equation further:
2sin^2(2x) = 1 + 2cos(x)sin(x) + sin^2(x)
Since sin^2(2x) can be written as 1/2 - 1/2cos(4x) using the double-angle identity for sine, the equation becomes:
1/2 - 1/2cos(4x) = 1 + 2cos(x)sin(x) + sin^2(x)
Now, let's combine like terms and rearrange the equation:
-1/2cos(4x) = 1 + 2cos(x)sin(x) + sin^2(x) - 1/2
-1/2cos(4x) = 1/2 + 2cos(x)sin(x) + sin^2(x)
Now, let's simplify the equation further by using the double-angle identity for cosine:
-1/2[cos^2(2x) - sin^2(2x)] = 1/2 + 2cos(x)sin(x) + sin^2(x)
-1/2cos^2(2x) + 1/2sin^2(2x) = 1/2 + 2cos(x)sin(x) + sin^2(x)
Now, let's substitute u = sin(2x):
-1/2(1 - u^2) + 1/2u^2 = 1/2 + 2cos(x)sin(x) + sin^2(x)
-1/2 + 1/2u^2 + 1/2u^2 = 1/2 + 2cos(x)sin(x) + sin^2(x)
1/2u^2 + 1/2u^2 = 1/2 + 2cos(x)sin(x) + sin^2(x) + 1/2
u^2 + u^2 = 1 + 4cos(x)sin(x) + 2sin^2(x) + 1
2u^2 = 2 + 4cos(x)sin(x) + 2sin^2(x)
Simplifying further:
u^2 = 1 + 2cos(x)sin(x) + sin^2(x)
Substituting u = sin(2x) back into the equation:
sin^2(2x) = 1 + 2cos(x)sin(x) + sin^2(x)
Now we have an equation in terms of sin(2x). To solve for x, we need to use trigonometric identities and techniques such as factoring, completing the square, or the quadratic formula to simplify and solve the equation.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili