Вопрос задан 22.06.2018 в 14:25. Предмет Математика. Спрашивает Соболев Данил.

Имелось 2016 чисел ни одно из которых не равно нулю. Для каждой пары чисел записали их

произведение. Докажите, что среди выписанных произведений не менее трети положительные.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сагидулдинова Нурай.

Пусть имеется n чисел. В нашем случае n=2016. Пусть среди них имеется k отрицательных и, соответственно, n-k положительных. Количество отрицательных произведений равно k(n-k)  т.к. каждое такое произведение получилось от умножения отрицательного на положительное. Всего было C_n^2=n(n-1)/2 произведений.  Значит, надо доказать, что k(n-k)/(n(n-1)/2)≤2/3 для любого k=0,...,n. Т.к. парабола k(n-k) достигает максимума при k=n/2, то для n≥4  получим
k(n-k)/(n(n-1)/2)≤2(n/2)²/(n(n-1))=n/(2(n-1))≤4/(2·3)=2/3. Что и требовалось.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос