Вопрос задан 05.06.2023 в 00:36. Предмет Математика. Спрашивает Заливалова Валерия.

В финал конкурса красоты среди жирафов прошли два жирафа: Высокий и Пятнистый. 315 голосующих

поделены на 5 округов, каждый округ поделен на 9 участков, а на каждом участке по 7 голосующих. Голосующие большинством выбирают победителя на своем участке; в округе побеждает жираф, победивший в большинстве участков округа; наконец, победителем финала объявляется жираф, победивший в большинстве округов. Победил жираф Высокий. Какое наименьшее число голосующих могло проголосовать за него?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абдолдаев Диас.

Ответ:

60

Пошаговое объяснение:

мы берём больше половины, на минимально целое число, то есть из 9, мы берём 5 (9/2=4,5 округляем до единиц и получаем "5"), из 7 мы берём 4 (аналогично как из 9), из 5 мы берём 3 (тоже аналогично) и всё умножаем 5*4*3=20*3=60

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Победителем финала стал жираф Высокий, что означает, что он победил в большинстве округов. Для определения минимального числа голосующих, поддержавших его, мы можем рассмотреть наихудший сценарий для жирафа Пятнистого, то есть предположить, что он получил максимальное количество голосов на каждом участке в каждом округе.

В каждом округе есть 9 участков, и на каждом участке по 7 голосующих, что составляет общее число голосующих в каждом округе: 9 участков * 7 голосующих/участок = 63 голосующих/округ.

Таким образом, общее количество голосующих во всех округах равно: 5 округов * 63 голосующих/округ = 315 голосующих.

В худшем случае, если Пятнистый получил максимальное количество голосов в каждом округе, то он получил 314 голосующих. Оставшийся 1 голосующий голосовал за жирафа Высокого, чтобы он стал победителем.

Таким образом, наименьшее число голосующих, проголосовавших за жирафа Высокого, составляет 1 человек.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос