Вопрос задан 04.06.2023 в 18:53. Предмет Математика. Спрашивает Ивушкин Никита.

Найти указанный предел.lim arctg 2x/tg3xx -> 0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Богданов Егор.

lim arctg 2x/tg3x=lim arctg 2x/tg3x=2/3

x -> 0​

lim  2x/3x=2/3

x -> 0​

использовал эквивалентности бесконечно малых, заменяя arctg 2x на 2х, а tg3x  на 3х, затем сократил дробь на х.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения указанного предела, давайте воспользуемся асимптотическим свойством тангенса.

Мы знаем, что tg(π/4) = 1, и у нас есть предел tg(3x) при x стремящемся к нулю. Давайте воспользуемся этими фактами.

lim (3x) -> 0 tg(3x) = tg(0) = 0

Теперь мы можем переписать наш исходный предел следующим образом:

lim (arctg(2x)/tg(3x)) -> 0

Подставим найденное значение tg(3x):

lim (arctg(2x)/0) -> 0

Так как знаменатель равен нулю, мы имеем деление на ноль. Поэтому исходный предел не существует.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос