√3 ctg x = 2 | cos x |
Ответы на вопрос
Ответ:
1 ctgx=-√3/3 x=2π/3+πn,n∈z 2 sinx-2cosx=0/cosx tgx-2=0 tgx=2 x=arctg2+πn,n∈z
Пошаговое объяснение:
1 ctgx=-√3/3 x=2π/3+πn,n∈z 2 sinx-2cosx=0/cosx tgx-2=0 tgx=2 x=arctg2+πn,n∈z
To solve the equation √3 ctg x = 2 |cos x|, we'll break it down step by step.
First, let's simplify the equation using trigonometric identities:
ctg x is the same as cot x, which is equal to 1/tan x. So, we can rewrite the equation as:
√3 / tan x = 2 |cos x|
Next, we'll rewrite |cos x| using its definition:
|cos x| = cos x if cos x ≥ 0 |cos x| = -cos x if cos x < 0
Now, we'll consider the two cases separately:
Case 1: cos x ≥ 0
In this case, |cos x| = cos x, so our equation becomes:
√3 / tan x = 2 cos x
We can rewrite tan x as sin x / cos x:
√3 / (sin x / cos x) = 2 cos x
Multiply both sides by cos x to eliminate the denominator:
√3 = 2 sin x
Divide both sides by 2:
√3 / 2 = sin x
Taking the arcsin of both sides:
x = arcsin(√3 / 2)
Since arcsin(√3 / 2) = π/3, we have:
x = π/3 + 2kπ, where k is an integer.
Case 2: cos x < 0
In this case, |cos x| = -cos x, so our equation becomes:
√3 / tan x = 2 (-cos x)
√3 / tan x = -2 cos x
Following the same steps as in Case 1, we arrive at:
√3 / 2 = sin x
Taking the arcsin of both sides:
x = arcsin(√3 / 2)
Since arcsin(√3 / 2) = π/3, we have:
x = π - π/3 + 2kπ = 2π/3 + 2kπ, where k is an integer.
So, the general solutions to the equation are:
x = π/3 + 2kπ, where k is an integer, and x = 2π/3 + 2kπ, where k is an integer.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
