
Lim x-0 (tgx-sinx)/x^3


Ответы на вопрос

Ответ:
Пошаговое объяснение: lim(x→0) ((tgx-sinx)/x³)=1/2.
lim(x→0) ((tgx-sinx)/x³)
Неопределённлсть 0/0. ⇒
Нужно брать одновременно призводные от числителя и знаменателя,
причём знаменатель должен быть числом, отличным от нуля:
(x³)'=3x²
(3x²)'=6x
(6x)'=6. ⇒
От числителя нужно взять три производных.
Так как в числителе сумма, ⇒ берём производные по отдельности:
1.
(tgx)'=1/cos²x=(cosx)⁻²
((cosx)⁻²)'=-2*(cosx)⁻³*(-sinx)=2*(cosx)⁻³*sinx
(2*(cosx)⁻³*sinx)'=-6*(cosx)⁻⁴*sinx+2*(cosx)⁻²*cosx=
=-6*(cosx)⁻⁴*sinx+(2/(cosx)).
2.
(-sinx)'=-cosx
(-cosx)'=sinx
(sinx)'=cosx ⇒
(-6*(cos0)⁻⁴*sin0+(2/(cos0))+cos0)/6=(-6*1*0+(2/1)+1)/6=3/6=1/2.



To evaluate the limit of the function , we can use L'Hôpital's rule, which states that if the limit of the ratio of two functions exists in an indeterminate form of or , then the limit of their derivatives will be the same.
Let's apply L'Hôpital's rule to the given function:
We can differentiate the numerator and the denominator separately:
Numerator:
Denominator:
Now we can rewrite the limit using the derivatives:
Let's evaluate the limit again at :
We still have an indeterminate form. Applying L'Hôpital's rule again:
Numerator:
Denominator:
Now we can rewrite the limit using the new derivatives:
Evaluating the limit at once more:
We still have an indeterminate form. Applying L'Hôpital's rule for the third time:
Numerator:
Denominator:
Now we can rewrite the limit using the new derivatives:
Evaluating the limit at for the final time:
Therefore, the limit of