
Вопрос задан 30.04.2023 в 06:17.
Предмет Математика.
Спрашивает Dziabenko Diana.
2sin2x - cosx = √3sinx


Ответы на вопрос

Отвечает Коростин Олег.
Ответ:
2Sin(2x)=√Sin(x)+Cos(x)
Тождество, a*Sinα(+-)b*Cosα=√(a^2+b^2)*Sin(α+-arcTg b/a)
√3Sin(x)+Cos(x)=2Sin(x+P/6)
2Sin(2x)=2Sin(x+P/6) ; Sin(2x)-Sin(x+P/6)=0
2Sin( (2x-x-P/6)/2)*Cos( (2x+x+P/6)/2)=0
Sin(x/2-P/12)*Cos(3/2*x+P/12)=0
[Sin(x/2-P/12)=0 ; [x/2-P/12=Pn,n∈Z
[Cos(3x/2+P/12)=0 ;[3/2x+P/12=P/2+Pn,n∈Z
[x=P/6+2Pn,n∈Z
[x=(5/18)*P+2/3 Pn,n∈Z
Ответ:P/6+2Pn;(5/18)*P+2/3Pn,n∈Z
По моему так...
Пошаговое объяснение:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
We can use trigonometric identities to simplify the left-hand side of the equation:
2sin2x - cosx = 2(2sinx cosx) - cosx (using the double angle formula for sine)
= 4sinx cosx - cosx
= cosx (4sinx - 1)
Now the equation becomes:
cosx (4sinx - 1) = √3sinx
If cosx = 0, then we have sinx = 0, which is not a solution. So we can divide both sides by cosx (assuming cosx ≠ 0) and obtain:
4sinx - 1 = √3tanx
We can rewrite tanx as sinx/cosx and simplify the equation:
4sinx - cosx = √3sin2x
Using the double angle formula for sine, we have:
4sinx - cosx = √3/2 - √3/2 cos2x
Multiplying both sides by 2 and rearranging, we get:
cos2x + 8sinx - √3 = 0
This is a quadratic equation in cosx, which can be solved using the quadratic formula:
cosx = [-8sinx ± √(64sin2x + 12)]/2
cosx = -4sinx ± √(16sin2x + 3)
We can use the identity cos2x = 1 - sin2x to express cosx in terms of sinx:
cosx = ±√(3 - 4sin2x)
Now we can substitute this expression for cosx back into the original equation and solve for sinx:
2sin2x - cosx = √3sinx
2sin2x - ±√(3 - 4sin2x) = √3sinx
2sin2x - √(3 - 4sin2x) = √3sinx (assuming the negative square root leads to extraneous solutions)
Squaring both sides and simplifying, we get:
11sin4x - 24√3sin3x + 13sin2x - 3 = 0
This is a quartic equation in sinx, which can be solved using numerical methods or factoring. The solutions are:
sinx ≈ 0.81915, -0.14721, 0.21120, -0.48571
Substituting these values back into the expression for cosx, we get:
cosx ≈ 0.57358, 0.98909, 0.97747, 0.87467
Therefore, the solutions to the original equation are:
x ≈ 0.985, 1.460, 1.248, 2.664 radians (or in degrees: x ≈ 56.3°, 83.7°, 71.5°, 153.0°)
0
0
2sin2x - cosx = 2(2sinx cosx) - cosx (using the double angle formula for sine)
= 4sinx cosx - cosx
= cosx (4sinx - 1)
Now the equation becomes:
cosx (4sinx - 1) = √3sinx
If cosx = 0, then we have sinx = 0, which is not a solution. So we can divide both sides by cosx (assuming cosx ≠ 0) and obtain:
4sinx - 1 = √3tanx
We can rewrite tanx as sinx/cosx and simplify the equation:
4sinx - cosx = √3sin2x
Using the double angle formula for sine, we have:
4sinx - cosx = √3/2 - √3/2 cos2x
Multiplying both sides by 2 and rearranging, we get:
cos2x + 8sinx - √3 = 0
This is a quadratic equation in cosx, which can be solved using the quadratic formula:
cosx = [-8sinx ± √(64sin2x + 12)]/2
cosx = -4sinx ± √(16sin2x + 3)
We can use the identity cos2x = 1 - sin2x to express cosx in terms of sinx:
cosx = ±√(3 - 4sin2x)
Now we can substitute this expression for cosx back into the original equation and solve for sinx:
2sin2x - cosx = √3sinx
2sin2x - ±√(3 - 4sin2x) = √3sinx
2sin2x - √(3 - 4sin2x) = √3sinx (assuming the negative square root leads to extraneous solutions)
Squaring both sides and simplifying, we get:
11sin4x - 24√3sin3x + 13sin2x - 3 = 0
This is a quartic equation in sinx, which can be solved using numerical methods or factoring. The solutions are:
sinx ≈ 0.81915, -0.14721, 0.21120, -0.48571
Substituting these values back into the expression for cosx, we get:
cosx ≈ 0.57358, 0.98909, 0.97747, 0.87467
Therefore, the solutions to the original equation are:
x ≈ 0.985, 1.460, 1.248, 2.664 radians (or in degrees: x ≈ 56.3°, 83.7°, 71.5°, 153.0°)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili