
Log3(1/9) Log2(корень 2/2) 2)inx =3in b + 2in a -3 in c


Ответы на вопрос

log2((√2)/2)= -1/2



I assume you want me to simplify the given expression, using the properties of logarithms. Here are the steps to do that:
- Log3(1/9)
We know that loga(b) = logc(b) / logc(a) for any positive real numbers a, b, and c. Therefore, we can write:
Log3(1/9) = log10(1/9) / log10(3) [using the base conversion formula]
= -log10(9) / log10(3) [because log10(1/x) = -log10(x) for any positive x]
= -2 / log10(3) [because log10(9) = 2]
Therefore, Log3(1/9) can be simplified as -2/log10(3).
- Log2(корень 2/2)
Here, корень 2 means the square root of 2. So, we can write:
Log2(корень 2/2) = Log2(√2/2) = Log2(√2) - Log2(2)
= 1/2 - 1 [because Log2(√2) = 1/2 and Log2(2) = 1]
= -1/2
Therefore, Log2(корень 2/2) can be simplified as -1/2.
- 2inx = 3in b + 2in a - 3 in c
We can use the following logarithmic identities to simplify this expression:
a) loga(b) + loga(c) = loga(bc) [product rule] b) loga(b) - loga(c) = loga(b/c) [quotient rule] c) n loga(b) = loga(b^n) [power rule]
Using these identities, we can write:
2inx = 3in b + 2in a - 3 in c
=> inx^2 = in(b^3) + in(a^2) - in(c^3)
=> in(x^2/(b^3*c^3)) = in(a^2)
=> x^2/(b^3*c^3) = a^2 [using the fact that e^in(x) = x for any real x]
=> x = ±a√(b^3*c^3)
Therefore, the given expression can be simplified as x = ±a√(b^3*c^3).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili