Вопрос задан 28.04.2021 в 11:54. Предмет Математика. Спрашивает Сметанка Евгений.

A6=23 a24=14; a1=? d=?​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Туранов Артём.

Получится d=-0.5; a1=26

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The information provided is not sufficient to determine the values of a1 and d in the arithmetic sequence.

In an arithmetic sequence, the difference between any two consecutive terms is constant, and denoted by "d". We know the value of a24 and a6, but we do not know the value of d, which is needed to determine the value of a1.

However, we can use the given information to set up two equations and solve for both a1 and d.

The first equation relates a1 and a6:

a6 = a1 + 5d (since there are 5 terms between a1 and a6 in the sequence)

The second equation relates a6 and a24:

a24 = a6 + 18d (since there are 18 terms between a6 and a24 in the sequence)

Substituting the value of a6 from the first equation into the second equation, we get:

a24 = (a1 + 5d) + 18d

Simplifying this equation, we get:

a24 = a1 + 23d

Substituting the given values, we get:

14 = a1 + 23d

This equation alone cannot be solved for a1 and d, as we have two variables and only one equation. Therefore, we need another equation.

Without additional information, we cannot determine the value of d and hence we cannot determine the value of a1.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос