Вопрос задан 30.03.2021 в 19:29. Предмет Математика. Спрашивает Данилов Вася.

За 4 дня совместной работы два токари выполнили 3\5 всего задания. первый токарь может выполнить

все задачи на три дня быстрее чем второй. За какое время может выполнить каждый токарь самостоятельно? СРОЧНО!!!!!!!!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Семикина Аня.

Ответ:


Пошаговое объяснение:

3/5 : 4 = 3/20часть задания выполняют за один день



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть общее количество работы, которое нужно выполнить, равно 1. Тогда за 4 дня два токаря выполнили 3/5 работы, что означает, что осталось выполнить 2/5 работы.

За один день два токаря могут выполнить 3/5 * 1/4 = 3/20 работы (так как они вместе могут выполнить 3/5 работы за 4 дня, что равно 3/20 работы в день).

Пусть первый токарь может выполнить всю работу за x дней. Тогда второй токарь может выполнить всю работу за (x + 3) дня (так как первый токарь быстрее второго на 3 дня).

За один день первый токарь может выполнить 1/x работы, а второй токарь может выполнить 1/(x+3) работы.

Таким образом, уравнение для оставшейся работы будет выглядеть следующим образом:

2/5 = (3/20) * (1/x + 1/(x+3))

Решая это уравнение, мы получаем:

x = 5

То есть первый токарь может выполнить всю работу самостоятельно за 5 дней, а второй токарь может выполнить всю работу самостоятельно за 8 дней (5 + 3).

Ответ: первый токарь может выполнить всю работу самостоятельно за 5 дней, а второй токарь может выполнить всю работу самостоятельно за 8 дней.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос