Вопрос задан 30.03.2021 в 15:45. Предмет Математика. Спрашивает Морозов Виктор.

Переднее колесо экипажа имеет в окружности 225 см , а заднее-325. Какое наименьшее растояние должен

проехать экипаж, чтобв и переднее и заднее колесо сделали по целому числу оборотоа?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сафина Динара.
Задача на наименьшее общее кратное (НОК). Представим длины окружностей колёс как произведение их простых множителей:
225=25*9=5^2*3^2
325=25*13=5^2*13
Тогда YJR=5^2*3^2*13=2925   см
При этом переднее колесо сделает 2925/225=13 оборотов, заднее - 2925/325=9 оборотов. 
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы как переднее, так и заднее колесо сделали целое число оборотов, необходимо найти наименьшее общее кратное (НОК) длин окружностей переднего и заднего колеса.

Длина окружности вычисляется по формуле: длина окружности = 2 * π * радиус.

Пусть r1 - радиус переднего колеса, r2 - радиус заднего колеса. Длина окружности переднего колеса: 2 * π * r1 = 225 см. Длина окружности заднего колеса: 2 * π * r2 = 325 см.

Теперь найдем НОК длин окружностей, чтобы оба колеса сделали целое число оборотов.

НОК(225, 325) = (225 * 325) / НОД(225, 325).

Найдем сначала НОД(225, 325):

325 = 1 * 225 + 100, 225 = 2 * 100 + 25, 100 = 4 * 25 + 0.

НОД(225, 325) = 25.

Теперь найдем НОК(225, 325):

НОК(225, 325) = (225 * 325) / НОД(225, 325) = (225 * 325) / 25 = 9 * 325 = 2925 см.

Таким образом, чтобы и переднее, и заднее колесо сделали по целому числу оборотов, экипаж должен проехать наименьшее расстояние равное 2925 см.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос