
Cos(x-180)= tg(x-270)= ctg(2п+x)=


Ответы на вопрос

tg(x-270)= - ctgx
ctg(2П+x)= ctgx



To solve this problem, we need to use some trigonometric identities and simplify each expression:
Cos(x-180) = -cos(x) Using the identity cos(x - 180) = -cos(x), we can rewrite the first expression as -cos(x).
tg(x-270) = -cot(x) Using the identity tg(x - 270) = -cot(x), we can rewrite the second expression as -cot(x).
ctg(2п+x) = -tan(x) Using the identity ctg(2π + x) = -tan(x), we can rewrite the third expression as -tan(x).
Therefore, the three expressions can be simplified as follows:
- Cos(x-180) = -cos(x)
- tg(x-270) = -cot(x)
- ctg(2п+x) = -tan(x)
Note that all three expressions have a negative sign in front of them, which means that they are equivalent to the opposite of the corresponding trigonometric function. So, we can rewrite the expressions without the negative sign:
- Cos(x-180) = cos(x)
- tg(x-270) = cot(x)
- ctg(2п+x) = tan(x)
Therefore, the solutions for x are any angle for which the above equations hold. For example, if we take x = 0, then we have:
- Cos(0-180) = cos(0) -> -1 = 1 (false)
- tg(0-270) = cot(0) -> undefined = 1/0 (false)
- ctg(2π+0) = tan(0) -> -∞ = 0 (false)
So, there is no real solution for x that satisfies all three equations simultaneously.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili