
НОД 28,63. НОД 132,165. НОД 28,70,98. НОД 16,27


Ответы на вопрос

Ответ:
НОД 28, 63 = 7
НОД 132, 165 = 33
НОД 28, 70, 98 = 14
НОД 16, 27 = 1
Пошаговое объяснение:



To find the greatest common divisor (GCD) of two numbers, you can use the Euclidean algorithm. Here are the calculations for the given pairs of numbers:
GCD(28, 63): Using the Euclidean algorithm: 63 = 2 * 28 + 7 28 = 4 * 7 + 0
Since the remainder is 0, the GCD is the divisor of the previous step, which is 7. Therefore, GCD(28, 63) = 7.
GCD(132, 165): Using the Euclidean algorithm: 165 = 1 * 132 + 33 132 = 4 * 33 + 0
The remainder becomes 0, so the GCD is the divisor of the previous step, which is 33. Therefore, GCD(132, 165) = 33.
GCD(28, 70, 98): We can find the GCD of three numbers by finding the GCD of the first two, and then finding the GCD of the result with the third number.
GCD(28, 70) = 14 (using the Euclidean algorithm as shown in the first example) Now, we find the GCD(14, 98): 98 = 7 * 14 + 0
Since the remainder is 0, the GCD is the divisor of the previous step, which is 14. Therefore, GCD(28, 70, 98) = 14.
GCD(16, 27): Using the Euclidean algorithm: 27 = 1 * 16 + 11 16 = 1 * 11 + 5 11 = 2 * 5 + 1 5 = 5 * 1 + 0
The remainder becomes 0, so the GCD is the divisor of the previous step, which is 1. Therefore, GCD(16, 27) = 1.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili