
1. xy' + y + xe^(-x^(2)) = 0
2. (x + 2y)dx + 2xdy = 03. y = y' ln y4. y" + 4y' + 4y = 05. y" + 10y' + 34y = -9e^(-5x)6. y" + 4y = 3cosx

Ответы на вопрос

Вычтем
Допустим, μ=
Умножим обе части уравнения на μ:
Замена:
Допустим, μ=
Замена:
Решим, как однородное линейное уравнение:
Допустим, решение будет решение будет пропорционально e^(λx) для некоторой константы λ.
Заменим y=e^(λx) в дифференциальное уравнение:
(e^(λx))''+4(e^(λx))'+4e^(λx)=0;
Заменим (e^(λx))''=λ²e^(λx) и (e^(λx))'=λe^(λx):
λ²e^(λx)+4λe^(λx)+4e^(λx)=0;
(λ²+4λ+4)e^(λx)=0;
Т.к. e^(λx)≠0 для любого конечного λ, нули должны исходить от многочлена:
λ²+4λ+4=0;
(λ+2)²=0;
λ=-2 λ=-2;
Кратность корня λ=-2 - это 2, делающее
Ответ:



- To solve the differential equation xy' + y + xe^(-x^2) = 0:
Let's first rearrange the equation to isolate the derivative term:
xy' + y = -xe^(-x^2)
Now, we can rewrite the equation in a form suitable for the integrating factor method. The integrating factor is given by:
IF = e^(∫(1/x) dx) = e^(ln|x|) = |x|
Multiplying both sides of the equation by the integrating factor:
|x|xy' + |x|y = -|x|xe^(-x^2)
The left side can be rewritten using the product rule:
(d/dx)(|x|y) = -|x|xe^(-x^2)
Integrating both sides with respect to x:
∫(d/dx)(|x|y) dx = ∫(-|x|xe^(-x^2)) dx
Integrating the right side:
|x|y = ∫(-xe^(-x^2)) dx = (-1/2)e^(-x^2) + C
Now, we can solve for y:
y = (-1/2)(e^(-x^2) + C)/|x|
Therefore, the solution to the differential equation is:
y = (-1/2)(e^(-x^2) + C)/|x|, where C is a constant.
- To solve the differential equation (x + 2y)dx + 2xdy = 0:
Let's rearrange the equation:
(x + 2y)dx = -2xdy
Now, we can rewrite it in a form suitable for separation of variables:
(x + 2y)dx + 2xdy = 0
Dividing throughout by x:
(1 + 2y/x)dx + 2dy = 0
Now, we can separate the variables and integrate:
∫(1 + 2y/x) dx + ∫2dy = 0
Integrating:
x + 2y ln|x| + 2y = C
Rearranging the equation:
x + 2y(1 + ln|x|) = C
Therefore, the solution to the differential equation is:
x + 2y(1 + ln|x|) = C, where C is a constant.
- To solve the differential equation y = y' ln y:
Separate the variables:
(1/ln y) dy = dx
Integrating both sides:
∫(1/ln y) dy = ∫dx
This integral can be solved using a substitution. Let u = ln y, then du = (1/y)dy:
∫(1/u) du = ∫dx
ln|u| = x + C
Substituting back u = ln y:
ln|ln y| = x + C
Therefore, the solution to the differential equation is:
ln|ln y| = x + C, where C is a constant.
- To solve the differential equation y" + 4y' + 4y = 0:
The characteristic equation for this second-order linear homogeneous differential equation is:
r^2 + 4r + 4 = 0
Solving the quadratic equation, we find that it has a repeated root at -2:
(r + 2)^2 = 0
Therefore, the general solution to the differential equation is:
y(x) = (c1 + c2x)e^(-2x), where c1 and c2 are constants.
- To solve the differential equation y" + 10


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili