Вопрос задан 17.06.2018 в 01:07. Предмет Математика. Спрашивает Салтыкова Алёна.

На доске было написано пять целых чисел – коэффициенты и корни некоторого квадратного трёхчлена.

Одно из них стерлось, и остались числа 2,3,4,−5 . Какое наибольшее значение могло быть у стертого числа?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Клягин Роман.

У нас есть квадратный трехчлен: ax^2 + bx + c = 0, имеющий корни x1 и x2
Будем подбирать по корням.
2(x - 3)(x - 4) = 2x^2 - 14x + 24 - нет.
2(x - 3)(x + 5) = 2x^2 + 4x - 30 - подходит, неизвестное -30, корни 3 и -5.
2(x - 4)(x + 5) = 2x^2 + 2x - 20 - нет
3(x - 2)(x - 4) = 3x^2 - 18x + 24 - нет
3(x - 2)(x + 5) = 3x^2 + 9x - 30 - нет
3(x - 4)(x + 5) = 3x^2 + 3x - 60 - нет
4(x - 2)(x - 3) = 4x^2 - 20x + 24 - нет
4(x - 2)(x + 5) = 4x^2 + 12x - 40 - нет
4(x - 3)(x + 5) = 4x^2 + 8x - 60 - нет
-5(x - 2)(x - 3) = -5x^2 + 25x - 30 - нет
-5(x - 2)(x - 4) = -5x^2 + 30x - 40 - нет
-5(x - 3)(x - 4) = -5x^2 + 35x - 60 - нет
Вариант только один: -30.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос