
Вопрос задан 13.06.2018 в 00:52.
Предмет Математика.
Спрашивает Фролов Илья.
В ромбе АВСД диагонали пересекаются в точке О.ОМ,ОК,ОЕ перпендикуляры,опущенные на стороны АВ,ВС,СД
соответственно.Докажите,что ОМ=ОК,и найдите сумму углов МОВ и СОЕ.

Ответы на вопрос

Отвечает Борозна Настя.
Так как ромб - это параллелограмм, у которого все стороны равны, а его диагонали взаимно перпендикулярны и точкой пересечения делятся пополам, тогда тр-ки АОВ и ВОС равны, а значит и их высоты, проведенные из равных углов, будут равны.
Т.к. АВ||CD и ОМ перпендикуляр к АВ и ОЕ перпендикуляр к CD, то они лежат на одной прямой. Т. к. Угол СОЕ = Углу МОА и угол МОВ = углу DОЕ (как вертикальные) и диагонали ромба взаимно перпендикулярны, получается, что сумма углов МОВ и СОЕ - 90 градусов


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili