Вопрос задан 12.06.2018 в 18:09. Предмет Математика. Спрашивает Охрименко Лиза.

Число 80 записать в виде суммы двух положительных чисел так, чтобы сумма квадратов этих чисел была

наименьшей. Чему равна разность этих чисел?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сакенулы Юнус.

Это будут числа  близкие к 80 / 2 = 40 это пара чисел 39 + 41
39^2 + 41^2 = 1521 + 1681= 3202     Сумма квадратов других пар будет  больше , например : 80 = 2 + 78        2^2 + 78^2 =  4  +6084 = 6088

0 0
Отвечает Алексеев Денис.

Допустим одно число х , а другое у.
Выразим x через у: x+y=80 y=80-x
запишем вот такое выражение 
 x^{2} +  (80-x)^{2} - найдем его наименьшее значение для этого упростим его.
 x^{2} + x^{2} -160x+6400
В итоге получаем квадратный тричлен который всегда >0 . Поскольку график направлен вверх , то наименьшее значение будет в вершине параболы .
2 x^{2}-160x+6400
Найдем вершину параболы:
 x_{0}= \frac{-b}{2a}= \frac{160}{2*2}= \frac{160}{4}=40    это первое число .
Второе : y=80-x y=80-40 y=40
Других чисел нет .
Ответ: x=40 y=40.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос