Вопрос задан 11.06.2018 в 04:55. Предмет Геометрия. Спрашивает Петюренко Серёжа.

На окружности строится последовательность точек: первая тоска берется произвольно, а начиная со

второй, каждая следующая удалена от предыдущей на расстояние, равное радиусу окружности. Докажите, что седьмая точка совпадает с первой.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зайчик Инна.

Ну хорошо вот вам строгое доказательство.Проведем к концам отрезка величиной r,два радиуса r,то треугольник с вершиной в центре окружности равносторонний,и угол при вершине 60 градусов. Проведем радиусы ко всем концам 5 последовательным отрезков равных по величине самому радиусу(как и было сказано в условии) ,то есть последняя вершина будет 6-ой. Тогда yгол A1OA6=60*5=300. Таким образом до полного круга не хватает еще 360-300=60.Значит угол A6OA1=60,тк треугольник A6OA1 равнобедренный Тк боковые стороны равны как радиусы,то равны и углы при основе . И они равны:( 180-60)/2=60. То есть треугольник A6OA1 тоже равносторонний как и все остальные,а значит A6A1=r. А значит Тк при известном положении точки A6 существует только 1 точка A7 лежащая правее A6 ,что угол A6OA7 равен 60,то отсюда очевидно что A1=A7

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос