
Дан прямоугольный треугольник RST с прямым угломT. На катете RT взята точка М. Окружность диаметром
ТМ и ценром О касается гипотенузы в точке N. Доказать, что MN и SO параллельны

Ответы на вопрос

Как-то сложно сформулировано, непонятно немного. Долго пытался представить чертёж, и примерно решил, что в условии имеется в виду, что ТМ является диаметром некой окружности, следовательно центр окружности (предположительно называемый О) находится на катете RT, ровно посерединке отрезка МТ. И при этом окружность вписана в угол TSR. Всё так?
Чертёж я по-любому рисовать не буду, ты уж как-нибудь сам.
Если всё так, то поехали. Проведём отрезок OS. Он пересечёт окружность в некой точке внутри треугольника, обозначим её буквой Х.
Смотрим теперь на два угла: ТОN и ТМN. Оба опираются на одну и ту же дугу TXN. Ещё замечаем, что ТОN является центральным углом окружности, а TMN вписанным. Следовательно TMN составляет половину от TОХ. А также видим, что отрезок SO одновременно является биссектрисой угла TSR, и бьёт точкой Х дугу TN ровно пополам. Следовательно, угол ТОХ, он же TOS равен углу TMN.
А раз такое дело, что отрезок RT пересекает два других: SO и MN под одним и тем же углом, то указанные два отрезка SO и MN параллельны. Вот, как бы, и всё. Привет учительнице.


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili