Вопрос задан 10.06.2018 в 06:30. Предмет Геометрия. Спрашивает Топчиёва Ксения.

Из точки к плоскости проведены две наклонные. Известно, что длины наклонных равны 25 и 30см, а

разность длин их проекций -1 см. Найдите расстояние от данной точки до плоскости.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сорокина Валерия.

Наклонная AB = 25, BC = 30, BD - перпендикуляр, проведенный к плоскости. AD и CD - проекции. так как наклонная BC > AB, то и проекция CD > AD. значит, CD - AD = 11. Принимаем проекцию AD за x. Тогда CD = x+11. за т. пифагора:
BD = AB - AD(все в квадрате)
BD = BC - CD(все в квадрате)
значит, AB-AD=BC-CD(все в квадрате)
x = 18, x+11 = 29
снова используем теорему пифагора:
BD = AB - AD(все в квадрате)
BD (в квадрате) = 625 - 324 = 301
как-то так. число выходить некрасивое

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос