
Вопрос задан 26.07.2020 в 11:30.
Предмет Геометрия.
Спрашивает Акименко Кирилл.
Биссектриса острого угла треугольника делит противолежащий катет на отрезки 4 см и 5 см. Найдите
радиус вписанной в треугольник окружности.

Ответы на вопрос

Отвечает Умрихин Слава.
1) один катет 9 см; второй катет у (см); гипотенуза х (см); 2) биссектриса делит катет на пропорциональные отрезки: 5/х=4/у у=0,8х (1) по теореме Пифагора: х^2=9^2+у^2 подставим из (1) х^2=81+(0,8х)^2 х^2-0,64х^2=81 0,36х^2=81 х=√225=15 (см); у=0,8*15=12 (см); 3) найдём площадь треугольника: S=9*12/2=54 (см^2); полумериметр равен: р=(9+12+15)/2=18 (см); 4) S=p*r; 54=18*r r=54:18=3 (см); ответ: 3


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili