 
Вопрос задан 23.07.2020 в 06:16.
Предмет Геометрия.
Спрашивает Добыш Мария.
вершины правильного шестиугольника со стороной 2 служат центрами кругов радиусом корень из 2.
найдите площадь части шестиугольника, расположенной вне этих кругов 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Бабич Настя.
                
    1) Узнаем площадь шестиугольника по формуле:
Sшестиуг = 3*корень из 3/2 * R2, радиус шестиугольника = стороне =2
Sшестиуг = 2,6 * 4 = 10,4
2) узнаем площадь каждого сегмента из 6 кругов,радиус которых=корень из 2
Cумма внутренних углов шестиуг=720град
Угол альфа каждого сегмента=120град
S cегм=R2/2(п* угол а/180 - sin a)
S cегм = (корень из 2 в квадрате/2) * (3,14 * 120/180 - sin120)
S cегм= 3,14 *2/3-0,866=2,09-0,866=1,2
Scегмента=1,2
3) 1,2 * 6 = 7,2 - площадь 6 сегментов
4) S шестиуг - S сегм = 10,4 - 7,2 = 3,2 - площадь части шестиугольника,расположенная вне части углов.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			