Вопрос задан 21.07.2020 в 20:14. Предмет Геометрия. Спрашивает Пичугина Ангелина.

Найдите площадь прямоугольного треугольника с острым углом 30°, если его гипотенуза равна: 1) 8 см;

2) 12 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Водолеев Никита.
Пусть гипотенуза AB , и катеты CB,CA
1) если гипотенуза 8см
1)CB=sin30*8=1/2*8=4 см
2) по теореме Пифагора 
CA= \sqrt{AB^2-CB^2}= \sqrt{64-16 } =\sqrt{48}=4\sqrt{3}
S=CB*CA=4*4\sqrt{3}=16\sqrt{3}
2)если гипотенуза 12
1)CB=sin30*12=1/2*12=6 см
2)CA= \sqrt{AB^2-CB^2}= \sqrt{144-36 } =\sqrt{108}=6\sqrt{3}
3)S=CB*CA=4*6\sqrt{3}=24\sqrt{3}
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос