
Вопрос задан 04.07.2020 в 15:50.
Предмет Геометрия.
Спрашивает Ким Софья.
На окружности основания конуса с вершиной S отмечены точки A, B и C так, что AB = BC . Медиана AM
треугольника ACS пересекает высоту конуса. а) Точка N —середина отрезка AC . Докажите, что угол MNB прямой. б) Найдите угол между прямыми AM и SB, если AS = 2, AC = 6 .

Ответы на вопрос

Отвечает Сокольникова Виолетта.
А) Доказательство
По условию задачи медиана AM треугольника ACS пересекает высоту
конуса, значит медиана АМ и высота конуса ∈ плоскости Δ ACS.
Учитывая, что SC и SA образующие конуса, то SC = SA, значит Δ ACS - равнобедренный.
Т.к. N - середина АС, тогда SN - высота конуса и высота Δ ACS. ⇒ SN ⊥ AC и АС - диаметр основания конуса.
По условию AB = BC ⇒ ΔАВС - равнобедренный,
тогда BN - высота ⇒ BN ⊥ AC и BN ⊥ AN
Учитывая, что SN ⊥ BN, AS - наклонная, AN - проекция наклонной (AN ⊥ BN), то по теореме о трех перпендикулярах AS ⊥ BN, а значит BN ⊥ MN, так как MN || AS (MN - средняя линия).
Что и требовалось доказать.
б) Найдите угол между прямыми AM и SB, если
Решение.
Построим прямую МЕ || SB. Прямые AM и SB скрещиваются, поэтому угол между ними, будет равен углу между прямой АМ и МЕ.
Угол АМЕ найдем из ΔАЕМ, для это найдем его стороны.
ΔАВС - равнобедренный (по условию AB = BC) и прямоугольный. ∠ ВАС = 90° т.к. это угол опирается на диаметр окружности), тогда

AE - медиана, то по формуле медианы треугольника найдем

Рассмотрим ΔASC. AМ - медиана, то по формуле медианы треугольника найдем

Рассмотрим ΔSBC. Где AS = SB = 2, ME - средняя линия ΔSBC, тогда
МЕ = SB / 2 = 2 / 2 = 1
Тогда по теореме косинусов из ΔAME найдем ∠AME = α

Отсюда


Ответ:

По условию задачи медиана AM треугольника ACS пересекает высоту
конуса, значит медиана АМ и высота конуса ∈ плоскости Δ ACS.
Учитывая, что SC и SA образующие конуса, то SC = SA, значит Δ ACS - равнобедренный.
Т.к. N - середина АС, тогда SN - высота конуса и высота Δ ACS. ⇒ SN ⊥ AC и АС - диаметр основания конуса.
По условию AB = BC ⇒ ΔАВС - равнобедренный,
тогда BN - высота ⇒ BN ⊥ AC и BN ⊥ AN
Учитывая, что SN ⊥ BN, AS - наклонная, AN - проекция наклонной (AN ⊥ BN), то по теореме о трех перпендикулярах AS ⊥ BN, а значит BN ⊥ MN, так как MN || AS (MN - средняя линия).
Что и требовалось доказать.
б) Найдите угол между прямыми AM и SB, если
Решение.
Построим прямую МЕ || SB. Прямые AM и SB скрещиваются, поэтому угол между ними, будет равен углу между прямой АМ и МЕ.
Угол АМЕ найдем из ΔАЕМ, для это найдем его стороны.
ΔАВС - равнобедренный (по условию AB = BC) и прямоугольный. ∠ ВАС = 90° т.к. это угол опирается на диаметр окружности), тогда
AE - медиана, то по формуле медианы треугольника найдем
Рассмотрим ΔASC. AМ - медиана, то по формуле медианы треугольника найдем
Рассмотрим ΔSBC. Где AS = SB = 2, ME - средняя линия ΔSBC, тогда
МЕ = SB / 2 = 2 / 2 = 1
Тогда по теореме косинусов из ΔAME найдем ∠AME = α
Отсюда
Ответ:



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili