Вопрос задан 02.07.2020 в 22:52. Предмет Геометрия. Спрашивает Юрьева Алёна.

Точки A и B лежат на двух окружностях с общим центром и радиусами rA=2 см и rB=4 см соответственно.

Величина ∠AOB (O – общий центр окружностей) равна 60∘. Найдите расстояние |AB|. Ответ запишите в сантиметрах, округлив до сотых.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хворов Иван.

Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.

x = (180 - 60)/2 = 120/2 = 60

Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:

AB = √(OB^2 - AO^2)

AB = √(4^2 - 2^2)

AB = √(16 - 4)

AB = √(12)

AB = √(4 * 3)

AB = 2√3


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос