
Вопрос задан 27.06.2020 в 03:54.
Предмет Геометрия.
Спрашивает Рябичева Анастасия.
Теорема о свойстве двух касательных к окружности, проведённых из одной точки (доказательство)


Ответы на вопрос

Отвечает Зимин Коля.
Дано: окружность(O;R)
АВ и АС- касательные
ОА- прямая
Доказать: АВ=АС
Угол ВАО=углу САО
Доказательство: проведём ОВ и ОС- перпендикуляры, ОС перепендикулярно АС, ОВ перпендикулярно АВ
Треугольник АВО= треугольнику АСО (по катету и гипотенузе)
Угол ВАО= углу САО ( как соответствующие) следовательно АВ=АС как соответствующие ч.т.д.
АВ и АС- касательные
ОА- прямая
Доказать: АВ=АС
Угол ВАО=углу САО
Доказательство: проведём ОВ и ОС- перпендикуляры, ОС перепендикулярно АС, ОВ перпендикулярно АВ
Треугольник АВО= треугольнику АСО (по катету и гипотенузе)
Угол ВАО= углу САО ( как соответствующие) следовательно АВ=АС как соответствующие ч.т.д.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili