Вопрос задан 05.06.2018 в 15:24.
Предмет Геометрия.
Спрашивает Кузнецова Дарья.
Дан равнобедренный треугольник с боковой стороной,равной 30 см,и высотой,опущенной на
основание,равной 18 см.Найдите радиус его вписанной окружностиОтветы на вопрос
Отвечает Кадырова Назгуль.
Пусть мы имеем треугольник ABC. AB и AC - боковые стороны, BC - основание. AK - высота, опущенная на основание.
Итак, в равнобедр. тр. высота является также биссектрисой и медианой, т.е. тр. ABK = тр. ACK, и BK=CK (отрезки основания)
Берём один из прямоугольных треугольников и пишем для него теорему Пифагора:
900 = 324 + X^2 (X = отрезок основания)
X^2 = 900-324 = 576 = 24^2
X=24
Значит, целое основание = 48 см
S = Pr/2, или площадь = периметр*радиус впис./2
S = a*ha/2 (основание на высоту основания и пополам)
S = 432
P = 2*30 + 48 = 108
r = 2S/P
r = 8 см
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
