
Вопрос задан 01.06.2020 в 11:40.
Предмет Геометрия.
Спрашивает Коробейникова Анастасия.
К двум пересекающимся окружностям радиусов 12 и 4 см проведена касательная. Найдите расстояние
между центрами окружностей, если отрезок АВ касательной равен 17 см.


Ответы на вопрос

Отвечает Чивиленко Александра.
Т.к. АВ - касательная в обеим окружностям, то она перпендикулярна ОА и О1В, значит ОА параллельно О1В и значит АВО1О - прямоугольная трапеция. Из точки О1 опустим перпендикуляр О1С на сторону ОА и получим прямоугольный треугольник СОО1 и прямоугольник АВО1С. О1С = АВ = 17; АС = ВО1 = 4.
Рассмотрим треугольник СОО1: СО=ОА-СА=ОА-ВО1=12-4=8. По теореме Пифагора ОО1^2=CО^2+O1C^2=8^2+17^2=64+289=353/
Ответ: ОО1 = корень из 353


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili