
Вопрос задан 04.05.2020 в 18:04.
Предмет Геометрия.
Спрашивает Хакимова Роксана.
Радиус окружности описанной около правильного многоугольника равен 4 корня из 2 а сторона
многоугольника 8 см. Найдите: 1) Радиус окружности вписанной в многоугольник 2) Количество сторон многоугольника

Ответы на вопрос

Отвечает Осипова Кристина.
Рассмотрим задачу на данном примере. Построим многоугольник, вписанную и описанную окружность.
Рассмотрим прямоугольный треугольник, образованный двумя радиусами. Тогда по теореме Пифагора R=√(r²+ r²) =√2r²=r√2. Используем условие r√2=4√2 ⇒ r=4√2/√2=4см, тогда сторона нашего многоугольника а=2r=2*4=8см, что соответствует условию, значит количество сторон многоугольника =4
Ответ: Радиус окружности вписанной в многоугольник =4см, количество сторон многоугольника-4.
Рассмотрим прямоугольный треугольник, образованный двумя радиусами. Тогда по теореме Пифагора R=√(r²+ r²) =√2r²=r√2. Используем условие r√2=4√2 ⇒ r=4√2/√2=4см, тогда сторона нашего многоугольника а=2r=2*4=8см, что соответствует условию, значит количество сторон многоугольника =4
Ответ: Радиус окружности вписанной в многоугольник =4см, количество сторон многоугольника-4.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili