Вопрос задан 03.05.2020 в 13:07. Предмет Геометрия. Спрашивает Архипова Наташа.

Основанием прямой призмы служит трапеция ABCD (AD // BC), у которой АВ = 26 см, ВС = 22 см, CD = 25

см, AD = 39 см. Площадь сечения AA1C1C равна 400 см^2. Найдите объем призмы.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гюлумян Рома.
Для нахождения объема призмы нужно знать площадь её основания и высоту.
Площадь трапеции в основании равна произведению высоты на среднюю линию.
Высота трапеции равна высоте треугольника АВК, где ВК =с. а АК=d-b=17cm.
h=(2V(p(p-a)(p-c)(p-(d-b)))/(d-b)=(2V(34(34-26)(34-25)(34-17))/17=24 см.
Lср=39+22/2=30,5 см. So=24*30,5=732 cm^2
Высоту призмы можно найти, разделив площадь сечения АА1С1С на диагональ АС. Если провести вторую высоту СМ, получим два прямоугольных треугольника – АСМ и СМД. ДМ = V(c^2-h^2)=V(25^2-24^2)=7 cm.  AM=39-7=32 cm. AC=V(32^2+24^2)=V(1024+576)=40 cm. Высота призмы равна 400/40=10 см. Объём прихмы равен 732*10=7320 см^3.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос