 
Вопрос задан 01.05.2020 в 22:28.
Предмет Геометрия.
Спрашивает Бийсембина Анжелика.
Решите уравнение |sin x| + |cos x|=1,4
 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Медведев Федор.
                
     Видно  наиболее оптимальным вариантом   будет возвести обе части  равенства в квадрат:
тк |a|^2=a^2
sin^2x +2|sinx|*|cosx|+cos^2x=(1,4)^2
sin^2x+cos^2x=1
По свойству модулей:
|sin2x|=0,96
sin2x=+-0,96
x=1/2 *(-1)^n *+-arcsin(0,96)+pi*n/2
                                        тк |a|^2=a^2
sin^2x +2|sinx|*|cosx|+cos^2x=(1,4)^2
sin^2x+cos^2x=1
По свойству модулей:
|sin2x|=0,96
sin2x=+-0,96
x=1/2 *(-1)^n *+-arcsin(0,96)+pi*n/2
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			