
Дана правильная четырёхугольная пирамида MABCD, все рёбра которой равны 6. Точка N — середина
бокового ребра MA, точка K делит боковое ребро MB в отношении 5:1, считая от вершины M.а) Докажите, что сечение пирамиды плоскостью, проходящей через точки N и K параллельно прямой AD, является равнобедренной трапецией.б) Найдите площадь этого сечения.

Ответы на вопрос

Для построения заданного сечения соединим точки N и K.
Т.к. сечение параллельно AD и проходит через точку N, то проводим в плоскости MAD прямую NP, параллельную AD - это средняя линия треугольника MAD.
Проведем прямую KL ║ BC в ΔMBC. Т.к. BC ║ AD, то KL ║ AD и следовательно прямая KL проходящая через точку K и будет одной из сторон сечения.
Окончательно соединяем точки P и L лежащие в одной плоскости и получаем сечение NKLP.
Т.к. KL ║ AD и NP ║ AD, то KL ║ NP и следовательно NKLP - трапеция.
ΔDMC = ΔAMB (т.к. пирамида правильная) ⇒ ∠DMC = ∠AMB
PM = NM (т.к. ΔDMA равносторонний и NP ║ AD)
LM = KM (т.к. ΔBMC равносторонний и KL ║ BC)
Тогда ΔPML = ΔNMK (по двум сторонам и углу между ними).
Следовательно PL = NK и трапеция NKLP - равнобедренная.
Одно из оснований трапеции PN = 3, т.к. является средней линией в ΔAMD с основанием AD = 6
Второе основание KL = 5, т.к. ΔBMC ≈ ΔKML (по трем углам) с коэффициентом подобия 6/5
Найдем боковую сторону трапеции PL из ΔPML, в котором ∠PML = 60°, PM = 3, LM = 5 по теореме косинусов:
Найдем высоту NH трапеции NKLP. Т.к. трапеция равнобедренная, то
Из прямоугольного ΔNHK
Окончательно находим площадь сечения:


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili