
Вопрос задан 02.06.2018 в 14:34.
Предмет Геометрия.
Спрашивает Данцевич Валентин.
Вокруг окружности описана прямоугольная трапеция, длины оснований которой равны 8 и 12. Найдите
радиус данной окружности.

Ответы на вопрос

Отвечает Максимкин Анатолий.
Вокруг окружности можно описать четырехугольник тогда и только тогда, когда суммы его противоположных сторон равны.
Трапеция АВСD - четырехугольник. ⇒
АD+BC=AB+CD
АD+BC=20
AB+CD=20
Пусть АВ=х.
Тогда
CD=20-x⇒
Опустим из С высоту на большее основание и получим треугольник СНD,
в котором НD=12-8=4
CH=AB=x
CD=20-x
По т.Пифагора
НD²=CD²=CH²
16=400-40x+x²-x²
40x=384
x=9,6
Высота трапеции равна диаметру вписанной в нее окружности.
D=9,6
r=9,6:2=4,8



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili