
Вопрос задан 26.04.2020 в 21:01.
Предмет Геометрия.
Спрашивает Тарасова Екатерина.
В треугольнике ABC угол B=100°, угол A=40°.Точка D принадлежит AC. Причём угол BDC-тупой. Докажите,
что AB>BD.

Ответы на вопрос

Отвечает Бабина Елена.
Угол C равен 180 - 100 - 40 = 40°, значит AB = BC.
В треугольнике BDC сторона BD лежит против угла 40°, а BC - против тупого угла. Значит BC>BD и AB>BD.
Вообще говоря, где бы ни находилась точка D, если она не совпадает с А и С, то для угла BDC выполняется условие
40° < ∠BDC < 140°.
То есть этот угол заведомо больше угла С=40°, напротив которого лежит BD. То есть BD заведомо меньше BC и равного ему AB.
В треугольнике BDC сторона BD лежит против угла 40°, а BC - против тупого угла. Значит BC>BD и AB>BD.
Вообще говоря, где бы ни находилась точка D, если она не совпадает с А и С, то для угла BDC выполняется условие
40° < ∠BDC < 140°.
То есть этот угол заведомо больше угла С=40°, напротив которого лежит BD. То есть BD заведомо меньше BC и равного ему AB.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili