Вопрос задан 26.04.2020 в 21:01. Предмет Геометрия. Спрашивает Тарасова Екатерина.

В треугольнике ABC угол B=100°, угол A=40°.Точка D принадлежит AC. Причём угол BDC-тупой. Докажите,

что AB>BD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бабина Елена.
Угол C равен 180 - 100 - 40 = 40°, значит AB = BC.
В треугольнике BDC сторона BD лежит против угла 40°, а BC - против тупого угла. Значит BC>BD и AB>BD.
Вообще говоря, где бы ни находилась точка D, если она не совпадает с А и С, то для угла BDC выполняется условие
40° < ∠BDC < 140°.
То есть этот угол заведомо больше угла С=40°, напротив которого лежит BD. То есть BD заведомо меньше BC и равного ему AB.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос