
Вопрос задан 20.04.2020 в 05:43.
Предмет Геометрия.
Спрашивает Прокудина Алёна.
Высоты остроугольного треугольника ABC, проведенные из точек B и C, продолжили до пересечения с
описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC

Ответы на вопрос

Отвечает Александрова Алина.
Тк треугольник ABC вписан в окружность,то углы BB1С и BAC равны как углы вписанные в 1 окружность и опирающиеся на 1 дугу. тк отрезок B1С1 проходит через центр окружности,то B1C1-диаметр,тогда угол B1BC1 прямой тк опирается на диаметр.Если обозначить L и N основания высот,а E точка пересечения высот. ТО угол BEL=90-BB1C угол NBA=90-BEL=BB1С,откуда BAC=NBA=BB1C=x
тогда из прямоугольного треугольника BNA: 2x=90 x=45
Ответ:45 ==
тогда из прямоугольного треугольника BNA: 2x=90 x=45
Ответ:45 ==


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili