
Вопрос задан 19.04.2020 в 08:59.
Предмет Геометрия.
Спрашивает Перевощикова Настя.
Стороны основания прямого параллелепипеда равны 6 и 8 см, площадь основания равна 48 см2 (в
квадрате), одна с диагоналей параллелепипеда равна 26 см. найти площадь его боковой поверхности. с объяснением пожалуйста.

Ответы на вопрос

Отвечает Григораш Дмитро.
A=6; b=8; площадь основания = 48=ab⇒ основанием служит прямоугольник, то есть наш параллелепипед не только прямой, но и прямоугольный, то есть все его грани - прямоугольники. Диагонали основания по теореме Пифагора равны 10; третья сторона c параллелепипеда является одним из катетов треугольника, у которого вторым катетом является диагональ основания, а гипотенузой - диагональ параллелепипеда. Отсюда c²=26^2-10^2=24^2; c=24; площадь боковой поверхности = 2(ab+bc+ca)=2(48+192+144)=768


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili