Вопрос задан 19.04.2020 в 08:44. Предмет Геометрия. Спрашивает Пушкарёва Вероника.

В равнобедренной трапеции MNKP диагональ MK является биссектрисой угла при нижнем основании MP.

Меньшее основание NK равно 8 см. Найдите площадь трапеции, если один из углов в два раза меньше другого. В каком отношении высота KE делит основание MP.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Солнцева Алиана.

условие насчет "один из углов в два раза меньше другого" делает задачу элементарной. В самом деле, углы при основании равнобедренной трапеции равны, поэтому речь идет о внутренних односторонних углах при боковой стороне, сумма которых 180 градусов, поэтому угол при большем основании 60 градусов, а при меньшем - 120, конечно.

Но это означает, что трапеция является усеченным правильным треугольником. Поскольку диагональ трапеции является биссектрисой угла при основании, то попадает в середину стороны этого правильного треугольника. То есть верхнее основание - это средняя линяя правильного треугольника, до которого достраивается трапеция при продолжении боковых сторон. Отсюда большее основание равно удвоенному меньшему, то есть 16. 

Площадь можно сосчитать по разному, например, как 3/4 площади правильного треугольника со стороной 16. 

Однако можно и так - соединим середину большого основания с вершинами малого. Легко видеть, что трапеция разрезана на 3 равносторонних треугольника со стороной 8. Площадь каждого из них 8^2*корень(3)/4 = 16*корень(3), а площадь трапеции 48*корень(3).

Теперь заодно видно, что высота КЕ делит большое основание в отношении 3/1.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос