
Вопрос задан 11.04.2020 в 09:58.
Предмет Геометрия.
Спрашивает Черномашенцева Елизавета.
Разверткой боковой поверхности конуса является полукруг. Найдите угол при вершине осевого сечения.


Ответы на вопрос

Отвечает Гинаятов Акылбек.
Найдем длину окружности основания конуса. Так как развертка боковой поверхности полукруг, то:
P = 2ПR
P(осн.конуса) = 2ПR/2 = ПR
Найдем радиус основания конуса:
r = P / 2П
r = ПR / 2П = R / 2
Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°.
30° х 2 = 60°
Ответ: 60°.
P = 2ПR
P(осн.конуса) = 2ПR/2 = ПR
Найдем радиус основания конуса:
r = P / 2П
r = ПR / 2П = R / 2
Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°.
30° х 2 = 60°
Ответ: 60°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili