
Вопрос задан 30.05.2018 в 23:17.
Предмет Геометрия.
Спрашивает Некрасова Валерия.
Прямая проходит через точки А(1;-1) и B(-3;2). Найдите площадь треугольника,отсекаемого этой прямой
от осей координат.

Ответы на вопрос

Отвечает Пищевая Катерина.
Уравнение пряммой будем искать в виде y=kx+b;
Так как прямая проходит через точки А(1;-1) и B(-3;2), то
-1=k+b;
2=-3k+b;
откуда
k-(-3k)=-1-2;
4k=-3;
k=-0.75
b=-1-k;
b=-1-(-0.75)=-1+0.75=-0.25
уравнение пряммой имеет вид y=-0.75x-0.25
Ищем координаты пересечения пряммой с осями координат
x=0
y=-0.75x-0.25=-0.75*0-0.25=-0.25
(0;-0.25) b=|-0.25|=0.25
y=0;
y=-0.75x-0.25
0=-0.75x-0.25
0.25=-0.75x;
1=-3x;
x=-1/3;a=|-1/3|=1/3
Значит площадь треугольника, отсекаемого данной пряммой от осей координат равна
S=0.5ab
S=0.5*1/3*0.25=0.125/3=1/24


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili