
Вопрос задан 30.05.2018 в 13:08.
Предмет Геометрия.
Спрашивает Неронова Дарина.
1) Точки А и В лежат соответственно на сторонах NK и KP трапеции MNKP так, что NA=AK, 2KB = BP.
Выразить векторы MA,MB,AB через векторы a = MN( вектор)и b=MP(вектор) , если известно, что основание NK равно половине MP.

Ответы на вопрос

Отвечает Тимофеев Дмитрий.
Сумма векторов NA+AK = NK = (1/2)*MP, так как они коллинеарны и сонаправлены. NA=AK (дано), значит NA=AK=(1/4)*МР = (1/4)*b.
MA = MN+NA = a + b/4.
MP = MB+BP; b = MB + 2*KB. MB = b - 2*KB.(1)
MB = MA+AB = a + b/4 + b/4 +KB = a+b/2+KB.(2)
Приравниваем (1) и (2):
b - 2*KB = a+b/2+KB, откуда 3*КВ=(b/2)-а. КВ=(b-2a)/6. AB=AK+KB = b/4 + (b-2a)/6 = (5b-4a)/12.
MB= MA+AB = (a + b/4) + (5b-4a)/12 = 8(a+b)/12 = 2(a+b)/3.
Ответ: MA = a + b/4, MB = 2(a+b)/3, AB =(5b-4a)/12.
(смотри рисунок)



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili