
Вопрос задан 13.02.2020 в 07:51.
Предмет Геометрия.
Спрашивает Обласова Саша.
В треугольнике ABC AB=BC=75,AC=120.Найдите длину медианы BM


Ответы на вопрос

Отвечает Петрова Лиза.
Если две стороны (АВ и ВС) = по 75, то треугольник равнобедренный.
В равнобедренном треугольнике медиана ВМ является и высотой, и биссектрисой.
Следвательно, ВМ - высота, которая разделила треугольник АВС на два
прямоугольных треугольника АМВ и ВМС, АМ = МС = 120 : 2 = 60
Рассмотрим треугольник ВМС.
ВМ^2 = ВС^2 - MC^2 (по теореме Пифагора)
BM^2 = 75^2 - 60^2 = 5625 - 3600 = 2025
BM = 45
Ответ: ВМ = 45
В равнобедренном треугольнике медиана ВМ является и высотой, и биссектрисой.
Следвательно, ВМ - высота, которая разделила треугольник АВС на два
прямоугольных треугольника АМВ и ВМС, АМ = МС = 120 : 2 = 60
Рассмотрим треугольник ВМС.
ВМ^2 = ВС^2 - MC^2 (по теореме Пифагора)
BM^2 = 75^2 - 60^2 = 5625 - 3600 = 2025
BM = 45
Ответ: ВМ = 45


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili