
Объем цилиндра 12 см2. Найти объем конуса, если он имеет такой же диаметр и высоту что и цилиндр


Ответы на вопрос

V конуса=1/3πr²h=1/3*12=4см³



Vкон = 1/3πR²H = 4



Дано: объем цилиндра = 12 см² Требуется найти: объем конуса
Объем цилиндра вычисляется по формуле: V_цилиндра = П * r^2 * h, где П - число Пи (приблизительно равно 3,14), r - радиус цилиндра, h - высота цилиндра.
Так как диаметр конуса равен диаметру цилиндра, то его радиус тоже будет равен радиусу цилиндра.
Объем конуса вычисляется по формуле: V_конуса = (1/3) * П * r^2 * h, где П - число Пи (приблизительно равно 3,14), r - радиус конуса, h - высота конуса.
Так как в задаче сказано, что диаметр и высота конуса такие же, как у цилиндра, мы можем сделать вывод, что их радиусы тоже равны.
Объем цилиндра равен объему конуса: П * r^2 * h = (1/3) * П * r^2 * h.
Сокращая общие множители, получаем: r^2 * h = (1/3) * r^2 * h.
Поскольку r^2 и h находятся в обоих частях уравнения, их можно сократить: 1 = (1/3).
Это противоречие, значит, объем цилиндра не может быть равен объему конуса, если у них такие же диаметр и высота. Возможно, в задаче допущена ошибка.


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili