Вопрос задан 16.01.2020 в 01:54. Предмет Геометрия. Спрашивает Набидолла Жансерік.

Найдите площадь круга, вписанного в правильный шестиугольник, сторона которого равна 6см.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Еськов Павел.

Шестиугольник состоит из шести правильных треугольников со стороной а.

Радиус вписанной окружности равен высоте равностороннего треугольника.

r = h = a√3/2

S = πr² = π (a√3/2)² = πa²*3/4 = π*36*3/4 = 27π cм²


Замечание - площадь круга пr квадрат, а 2пr - это длина окружности.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Площадь круга, вписанного в правильный шестиугольник

Для нахождения площади круга, вписанного в правильный шестиугольник, нужно знать длину стороны шестиугольника. В данном случае, сторона шестиугольника равна 6 см.

Для решения этой задачи, можно использовать следующую формулу:

Площадь круга = (3 * квадратный корень из 3) / 2 * (длина стороны шестиугольника)^2.

Подставляя значения в формулу, получаем:

Площадь круга = (3 * квадратный корень из 3) / 2 * (6)^2.

Вычисляя это выражение, получаем:

Площадь круга ≈ 93.53 см².

Таким образом, площадь круга, вписанного в правильный шестиугольник со стороной 6 см, составляет примерно 93.53 см².

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос