Вопрос задан 14.01.2020 в 12:03. Предмет Геометрия. Спрашивает Вишневская Ксения.

через вершину A прямоугольника АВСД проведена прямая, пересекающая продолжение стороны ВС в точке Е

так, что ВС=СЕ. Периметр прямоугольника равен 46 см, а сторона ВС на 5 см больше АВ. Найдите площадь треугольника АВЕ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Казиханова Ольга.

ТОЧНО НЕ ЗНАЮ, НО ВРОДЕ ВОТ ТАК!

Пусть АВ=х , тогда ВС=х+5

P=2АВ+2ВС=2х+2(х+5)=2х+2Х+10=4х+10

4х+10=46  х=9 (это сторона АВ), значит ВС=14

ВС=СЕ=14, следовательно, ВЕ=28

Угол В у нас равен 90 градусов, значит треугольник прямоугольный.

S=1\2*AB*BE=1\2*9*28=126

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Understanding the problem

In this problem, we are given a rectangle ABCD, and a line passing through the vertex A intersects the extension of side BC at point E such that BC = CE. The perimeter of the rectangle is given as 46 cm, and the length of side BC is 5 cm more than the length of side AB. We need to find the area of triangle ABE.

Solution

To find the area of triangle ABE, we need to know the lengths of its base and height. Let's start by finding the lengths of sides AB and BC.

Let's assume that the length of side AB is x cm. According to the problem, the length of side BC is 5 cm more than AB. So, the length of side BC is (x + 5) cm.

The perimeter of the rectangle is given as 46 cm. The perimeter of a rectangle is the sum of the lengths of all its sides, which in this case is equal to 2(AB + BC). We can set up the following equation:

2(AB + BC) = 46

Substituting the values of AB and BC, we get:

2(x + x + 5) = 46

Simplifying the equation:

4x + 10 = 46 4x = 36 x = 9

So, the length of side AB is 9 cm, and the length of side BC is (9 + 5) = 14 cm.

Now, let's find the length of AE. Since BC = CE, we can conclude that triangle BCE is an isosceles triangle. Therefore, BE = CE = 14 cm.

To find the height of triangle ABE, we need to find the distance between point A and line BC. Let's call this distance h.

In triangle ABE, we have a right triangle ADE, where AD is the height h and DE is the base. Since triangle BCE is an isosceles triangle, DE is parallel to BC. Therefore, triangle ADE is similar to triangle BCE.

Using the similarity of triangles ADE and BCE, we can set up the following proportion:

AE / BE = AD / BC

Substituting the known values:

AE / 14 = h / 14

Simplifying the equation:

AE = h

Therefore, AE = h.

Now, let's find the value of h. We know that the length of side AB is 9 cm, and the length of side AE is the height h.

Using the Pythagorean theorem in right triangle ADE, we can set up the following equation:

AD^2 + DE^2 = AE^2

Substituting the known values:

9^2 + h^2 = h^2

Simplifying the equation:

81 = 0

This equation is not possible, which means there is no right triangle ADE, and the point E does not exist. Therefore, the triangle ABE cannot be formed.

Hence, the area of triangle ABE is 0 square centimeters.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос