
В треугольнике АВС сторона АВ равна 25 см, сторона АС равна 7 см, сторона ВС равна 24 см. Найдите
длину наименьшей высоты этого треугольника.

Ответы на вопрос

По обратной теореме Пифагора, если выполняется равенства c² = a² + b², то треугольник - прямоугольный.
25² = 7² + 24².
625 = 49 + 576
625 = 625
Значит, треугольник является прямоугольным. Тогда у него будет единственная высота, которая опущена на гипотенузу (большую сторону).
Найдём площадь треугольника. Она равна половине произведения его катетов.
S = 1/2•7 см•24см = 84 см².
Также площадь равна половине произведения высоты на гипотерузу, отсюда высота равна частности удвоенной площади на гипотенузу:
h = 168 см²/ 25 см = 6,72 см.
Ответ: 6,72 см.



Данный треугольник является прямоугольным. Это можно доказать с помощью теоремы Пифагора
У прямоугольного треугольника две высоты совпадают со сторонами.
1 высота - 7 см 2 высота - 24 см 3 высота - 6. 72 (по формуле)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili